THE LEAST QUADRATIC NONRESIDUE AND VINOGRADOV'S HYPOTHESIS.
Ключевые слова:
equidistribution in arithmetic progressions, dispersion method.Аннотация
Let αm and βn be two sequences of real numbers supported on [M,2M] and [N,2N] with M = X1/2−δ and N = X1/2+δ. We show that there exists a δ0 > 0 such that the multiplicative convolution of αm and βn has exponent of distribution (in a weak sense) as long as 0 ≤ δ < δ0, the sequence βn is Siegel-Walfisz and both sequences αm and βn are bounded above by divisor functions. Our result is thus a general dispersion estimate for “narrow” type-II sums. The proof relies crucially on Linnik’s dispersion method and recent bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the Titchmarsh divisor problem.
Библиографические ссылки
J. Bourgain, Mordell type exponential sum estimates in fields of prime order, Comptes Rendus Mathematique 339 (2004), 321–325.
J. Bourgain, Mordell’s exponential sum estimate revisited, Preprint, 2004.
D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106– 112.
The 10th problem 97
T. Cochrane, J. Coffelt and C. G. Pinner, A further refinement of Mordell’s bound on exponential sums, Acta Arith. 116 (2005), 35–41.
T. Cochrane and C. G. Pinner, Stepanov’s method applied to binomial exponential sums, Quart J. Math. 54 (2003), 243–255.
T. Cochrane and C. G. Pinner, An improved Mordell type bound for exponential sums, Proc. Amer. Math. Soc. 133 (2005), 313–320.
H. Iwaniec and E. Kowalski, Analytic number theory, (Amer. Math. Soc. Providence 2004).
S. V. Konyagin and I. E. Shparlinski, Character sums with exponential functions and their applications, (Cambridge Univ. Press Cambridge 1999).
N. M. Korobov, Exponential sums and their applications, (Kluwer Acad. Publ. Dordrecht 1992).
R. Lidl and H. Niederreiter, Finite fields, (Cambridge University Press Cambridge 1997).
I. E. Shparlinski, Finite fields: Theory and computation, (Kluwer Acad. Publ. Dordrecht 1999).
I. E. Shparlinski, Cryptographic applications of analytic number theory, (Birkhauser 2003). [13] R. C. Vaughan, The Hardy–Littlewood method, (Cambridge Univ. Press Cambridge 1981).