DIABETIC NEUROPATHY

Authors

  • Abdumannonova N.Z, Tashkent medical academy
  • Vosikova K.A, Tashkent medical academy
  • Tursunova Z.A, Tashkent medical academy
  • Shagazatova B.X. Tashkent medical academy

Keywords:

Diabetic neuropathy, hyperglycemia, pathogenesis, pathogenetic therapy.

Abstract

 

The review summarizes the results of global studies and assesses contribution of hyperglycemia towards formation of neurologic complications in diabetic patients. Hyperglycemia is believed to play a leading role in the formation of neurological complications in diabetes mellitus. However, the achievement of normalization of glycemia level does not ensure the cessation of their development and progression, which indicates a lack of knowledge about the pathogenetic relationships in diabetic neuropathy. Limited understanding of these issues entails the absence of treatment options that effectively affect the course of this complication. Based on the analysis of experimental and clinical studies of recent years, data on the molecular-biological relationships of hyperglycemia with the formation of neurological complications in diabetes mellitus are summarized. The influence of the oxidative and nitrosative stress, advanced glycation end products, the activation of the polyol and hexosamine pathways on the state of the nerve fiber is analyzed. The data on molecular mechanisms of development of diabetic neuropathy are contradictory. On the basis of recent experimental and clinical data we review possibilities for pathogenetic therapy. The problem of oppositely directed effects of treatment is discussed. Clinical rationale is given for declared direction of further studies.

References

Pop-Busui R, Boulton AJ, Feldman EL, Bril V, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136-154. doi:10.2337/dc16-2042.

Azmi S, Petropoulos IN, Ferdousi M, et al. An update on the diagnosis and treatment of diabetic somatic and autonomic neuropathy. F1000Res. 2019 Feb 15;8. pii: F1000 Faculty Rev-186. doi:10.12688/f1000research.17118.1.

Худякова Н.В., Пчелин И.Ю., Шишкин А.Н., и др. Гипергомоцистеинемия и кардиоренальный анемический синдром при сахарном диабете // Нефрология. 2015. Т. 19. № 5. С. 20-27. [Hudiakova NV, Pchelin IYu, Shishkin AN, et al. Hyperhomocysteinemia and cardiorenal anemia syndrome in diabetes mellitus. Nephrology (Saint-Petersburg). 2015;19(6):20-27. (In Russ)]

Aristidis V. Rayaz AM. Diabetic Neuropathy: Clinical Management. Humana Press. 2007. doi:10.1007/978-1-59745-311-0.

Худякова Н.В., Пчелин И.Ю., Шишкин А.Н. и др. Взаимосвязь гипергомоцистеинемии с гематологическими нарушениями и сердечно-сосу-дистыми осложнениями при диабетической нефропатии // Научный аспект. 2015. № 3(2). С. 271-81. [Hudyakova NV, Pchelin IYu, Shishkin AN, et al. Vzaimosvyaz' gipergomotsisteinemii s gematologicheskimi narusheniyami i serdechno-sosudistymi oslozhneniyami pri diabeticheskoi nefropatii. Nauchnyi aspekt. 2015;3(2):271-81. (In Russ)]

Avignon A, Sultan A. PKC-B inhibition: a new therapeutic approach for diabetic complications. Diabetes Metab. 2006;32(3):205-13.

Obrosova IG, Van Huysen C, Fathallah L, et al. Evaluation of alpha(1)-adrenoceptor antagonist on diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J. 2000;14:1548-1558.

Hohman TC, Cotter MA, Cameron NE. ATP-sensitive K+ channel effects on nerve function, Na+, K+ ATPase, and glutathione in diabetic rats. Eur J Pharmacol. 2000;397:335-341.

Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol. 2002;50:325-392.

Papanas N, Ziegler D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin Pharmacother. 2014;15(18):2721-31. doi: 10.1517/14656566.2014.972935.

Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care. 1999;22(8):1296-301.

Feldman EL, Nave KA, Jensen TS, et al. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron. 2017;93(6):1296-1313. doi:10.1016/j.neuron.2017.02.005.

Drel VR, Lupachyk S, Shevalye H, et al. New therapeutic and biomarker discovery for peripheral diabetic neuropathy: PARP inhibitor, nitrotyrosine, and

tumor necrosis factor-alpha. Endocrinology. 2010;151(6):2547-55. doi: 10.1210/en.2009-1342.

Obrosova IG, Xu W, Lyzogubov VV. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med. 2008;44(6):972-81.

Oates PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets. 2008;9(1):14-36.

Hotta N, Akanuma Y, Kawamori R. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care. 2006;29(7):1538-44.

Hussain G, Rizvi SA, Singhal S, et al. Diabetes Metab Syndr. Serum levels of TGF-β1 in patients of diabetic peripheral neuropathy and its correlation with nerve conduction velocity in type 2 diabetes mellitus. 2016;10(Suppl1):S135-9. doi:10.1016/j.dsx.2015.10.011.

Дедов И.И., Мельниченко Г.А. Российские клинические рекомендации. Эндокринология. М.: ГЭОТАР-Медиа; 2018. [Dedov II, Mel'nichenko GA. Rossiiskie klinicheskie rekomendatsii. Endokrinologiya. Moscow: GEOTAR-Media; 2018. (in Russ)]

American Diabetes Association Standards of Medical Care in Diabetes-2017. Diabets Care. 2017;40(1):S1-S135.

Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015;58:429-444. doi: 10.1007/s00125-014-3460-0.

Abu El-Asrar AM, Mohammad G, De Hertogh G. Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One. 2013;8(6):e65472. doi:10.1371/journal.pone.0065472.

Mutoh T, Tachi M, Yano S. Impairment of Trk-neurotrophin receptor by the serum of a patient with subacute sensory neuropathy. Arch Neurol. 2005;62(10):1612-5. doi:10.1001/archneur.62.10.1612.

Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res. 1990;26(2):258-67.

Kashyap MP, Roberts C, Waseem M, Tyagi P. Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol. 2018;55(8):6939-6955. doi:10.1007/s12035-018-0885-3.

Verge VM, Andreassen C, Arnason TG, Andersen H. Handb Mechanisms of disease: role of neurotrophins in diabetes and diabetic neuropathy. Clin Neurol. 2014;126:443-60. doi: 10.1016/B978-0-444-53480-4.00032-1.

Dewanjee S, Das S, Das AK, Bhattacharjee N. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol. 2018;833:472-523. doi:10.1016/j.ejphar.2018.06.034.

Bhatt MP, Lim YC, Ha KS. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res. 2014;104(2):234-44. doi:10.1093/cvr/cvu211.

Wahren J, Foyt H, Daniels M, Arezzo JC. Long-Acting C-Peptide and Neuropathy in Type 1 Diabetes: A 12-Month Clinical Trial. Diabetes Care. 2016;39(4):596-602. doi:10.2337/dc15-2068.

Qiao X, Zheng H, Zhang S. C-peptide is independent associated with diabetic peripheral neuropathy: a community-based study. Diabetol Metab Syndr. 2017;9:12. doi:10.1186/s13098-017-0208-2

Downloads

Published

2023-05-13