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Abstract: We propose a method of accelerating Python code by just-in-time 

compilation leveraging type hints mechanism introduced in Python 3.5. In our approach 

performance-critical kernels are expected to be written as if Python was a strictly typed 

language, however without the need to extend Python syntax. This approach can be applied 

to any Python applica- tion, however we focus on a special case when legacy Fortran 

applications are automatically translated into Python for easier maintenance. We developed 

a framework implementing two- way transpilation and achieved performance equivalent to 

that of Python manually translated to Fortran, and better than using other currently 

available JIT alternatives (up to 5x times faster than Numba in some experiments). 

Index Terms: Application migration, gradual typing, interop- erability, just-in-time 

compilation, legacy code, software main- tenance, transpilation. 

 

1. Introduction – Traits of Python and Fortran 

Python is praised by many because its flexible and dynamic nature makes 

programming much easier. However, this nature also makes overcoming its various 

performance issues much harder. Especially when compared to C, C++ and Fortran, Python 

is computationally very slow. 

On the other hand, performance is not and never was an issue in Fortran, indeed it is 

one of its hallmarks. Addition- ally, compared to more modern approaches Fortran is hard to 

use, but despite the difficulties, it is still in use because it has accumulated a remarkable 

legacy of fast code. Over the years a lot of money was invested to create huge code base 
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that now would be expensive to port – and is increasingly expensive to use [1], [2]. How 

might we enable continued use and development of old but very efficient computational 

solutions, implemented using legacy technologies such as Fortran 77? Maybe by migrating 

it to easy to use Python. 

However, at present, by such migration we would lose performance. How might we 

make high performance in Python more accessible? Specifically, how might we in- crease 

performance of performance-critical kernels written in Python, so that their performance 

matches the perfor- mance of equivalent kernels written in Fortran (or other HPC-enabled 

programming language)? 

After looking at strong and weak points of both lan- guages, we observe that Python 

and Fortran seem to be complementary solutions. Also, because modern Python can be 

typed, they might be close enough at the language level for source-to-source translation to 

become feasible. 

Our approach to problems of both languages is source- to-source translation employed 

in the right way at the right time. Cumbersome legacy Fortran application code could be 

translated (migrated) to type-hinted Python once and perma- nently. Since, by Amdahl’s Law 

[3], only the performance- critical parts of application require top performance, at the time 

of execution most of Python code could be interpreted normally without noticeable impact 

on application perfor- mance. The performance-critical kernels, however, would be JIT-

translated back to Fortran. 

This way, we will take advantage of the best traits of Python and Fortran to create 

computational solutions that are efficient, maintainable and build upon efficient legacy code. 

However, no known mapping exists between Python and Fortran. For the purpose of 

assisting application migration, and to enable JIT transpilation, we need such mapping – at 

least for a reasonably defined subset of both languages. 

2. Background 

2.1. Performance Issues in Python 

2.1.1. Everything is an object – Problems with dynamic indirection. In many 

languages there is a distinction be- tween normal types and primitive types (among them 

usually integers, floating point numbers, and character type) which receive special treatment 

from the compiler and therefore result in fast machine code. Taking this Python example: 

i = 0 

while i < 123456789: i += 1 

Since in Python everything is an object, even i = 0 does not declare an integer 

variable in a sense in which in C++11 auto i = 0; would. In Python, an object is created, and 

when i is incremented, Python interpreter must check how to increment value of object i, and 

exe- cute the relevant incrementation subroutine. This consumes unnecessary amount of 

computing resources. 

2.1.2. Duck typing – Static type information is unavail- able. Duck-typing is the 

principle that follows the saying “If it looks like a duck, it walks like a duck and it quacks 

like a duck, then it must be a duck.” that, in programming, translates to saying “If all objects 

from class A all have properties a and b, and if some unrelated given object has property a 
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and b, then it must comes from class A.” Needless to say, such statement is unreliable. 

In general-purpose programming such rule is not a prob- lem by itself, it can be even 

advantageous sometimes, but in case of computation it will cause an incredible slowdown. 

The reason for this is that in order to have efficient computa- tion, code needs to be compiled 

to optimized machine code and static type checking is necessary for many compiler 

optimizations. Statically, one cannot check what properties a given instance has, because at 

the moment of checking nothing is yet instantiated. Therefore for every operation, the most 

generic and robust machine code representation must be chosen, and such representation is 

necessarily much slower than the version designed for, for example operation on two 

floating-point numbers of specified precision. 

The duck typing problem is, in the context of efficient computation, a consequence of 

the fact that everything is an object. If there was some short list of types that were not 

objects, they would have reliable type information, and optimizations would be applicable. 

2.2. Software Development Issues in Fortran 

2.2.1. Designed for numerics – Problems with gener- ality. There are perfectly 

good reasons why Fortran is numerically-oriented. However, to unlock that power of 

numerical calculations it is essential to have easy access to data on which those 

calculations are to be performed. We argue that in Fortran, such access is problematic. 

Depending on the individual use case, the data might be in a database, in a binary 

file, in a text file or in some other media – which might be stored locally or remotely. There 

are many ways and formats in which data is stored in practice in modern heterogeneous 

world. Fortran does not provide solutions to access that data in many cases. It can be 

managed using an external tool, however this increases the complexity of the solution and 

maintenance effort. 

It is important to note that the issue of generality is still present in modern Fortran. 

2.2.2. Fixed form – Problems with extensibility. Fortran code in general has two 

forms: fixed and free form. Legacy Fortran code is often written in fixed form, because the 

new free form was only introduced in Fortran 90. Form, in this context, is in other words a 

set of constraints on how the source code must be formatted. 

The definition of fixed form contains very strict rules about what can be in each 

column
1
 of the source code file: 

• Column 1: Blank, or a “C” or “*” for comments – however many compilers allow 

other characters. 

• Columns 1-5: Optional statement label. 

• Column 6: Continuation of previous line, optional. 

• Columns 7-72: Statements. 

• Columns 73-80: Sequence number, optional and rarely used today. 

Therefore, line of code cannot have more than 80 char- acters, and only 65 of those 

can be used for instructions. 

An example application of some of those rules would 

be: 

statement 
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C comment 

100 statement with label sum = a + b + c + d 

& + e + f 

The free format, on the other hand, does not impose any very strict rules on code 

formatting, it is in fact al- most identical to the coding style seen in many modern 

languages such as C++ or Java. Therefore, in case of modern Fortran applications the 

problem of code format should not exist. Despite that, the standard practice for modern 

Fortran programs is to reuse existing legacy Fortran code as is – therefore although some 

parts of modern Fortran programs are relatively easier to build upon, depending on the case, 

a large fraction of code base might be in fixed form. 

 

2.2.3. Command-line, environment variables and prob- lems with 

interoperability. The ability to use command- line arguments
2
 or environment variables

3
 

in Fortran pro- grams was introduced into the language standard in year 2003. Before 

that, apart from extensions available in some compilers, the only way to provide data to 

Fortran program was through a file. In case of modern command-line argu- ment parsing, 

there is a Fortran library
4
 that was inspired by Python’s built-in argument parsing library – 

in fact even its usage looks surprisingly similar to that of Python’s version. Fortran-C 

interoperability was standardized in the 2003 language edition, and extended in 2008. 

One of the im- portant features of the upcoming Fortran 2015 specification is the 

improvement of C language interoperability. Fortran interoperability with other 

programming languages and tools is still an issue today, although not nearly at the scale 

at which it was in older Fortran. 

2.3. Gradual Typing with Type Hints 

After enumerating various examples of issues in Python and Fortran, let us go forward 

by describing how type information can be conveyed in a modern Python program. 

The method adopted by Python is called gradual typing. In this method, type 

information might be but does not have to be provided. 

Python language version 3.5, published in September 2015, in a Python Enhancement 

Proposal (PEP) numbers 0483 and 0484, introduced so-called type hints [4], [5]. As- suming 

one has the following function (remark: the example code is superfluous on purpose): 

1 def sum(a, b): 

2 c = None 

3 c = a + b 

4 return c 

Then, one can annotate it using type hints: 

1 def sum(a: int, b: int) -> int: 

2 c = None # type: int 

3 c = a + b 

4 return c 

There are two kinds of type hints: type annotations (line no.1 contains 3 annotations), 

and type comments (line no.2 contains a single type comment). The annotations are present 
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in Python grammar since version 3.0 of the lan- guage. They were originally meant as a 

means of function signature documentation, which did not have to contain type information 

and if it did its format was not standardized. 

With Python 3.5 a unified approach to annotations was introduced but for backwards 

compatibility those type anno- tations, although parsed into the abstract syntax tree (AST), 

are completely ignored by CPython interpreter during exe- cution. Type comments are 

treated like regular comments, and are discarded by the parser, thus making type hints 

backwards-compatible to Python 3.0. Apart from lack of support for them in built-in 

CPython modules, also almost all other packages take no notice. This situation has much 

potential for improvement. 

Type hints can be used to convey the intent of the author of the code, but that intent 

disappears and Python neither does take advantage of it, neither it is troubled by it. In the 

above case, the 2nd implementation might as well be used to add floating point numbers, 

concatenate strings of characters, or even concatenate lists – exactly like 1st 

implementation. This can be considered a good thing, or a bad thing. In our opinion, this 

flexible nature is one of core characteristics of Python, and is inherently a good thing. The 

intent of the original author of the code is not forced in any way, which leaves increased 

possibility for code reuse. When 1st and 2nd version of the sum() function is parsed using 

built-in modules, the resulting AST looks slightly different, because the function signature 

annotations are retained. Execution, however, is not affected even if in principle it could 

be affected. And we think that for 

performance reasons, in some cases it should be affected. 

3. Related Work 

3.1. Migrating Legacy Fortran 

For converting legacy Fortran code, there are several solutions available: f2c [6] 

converts it to C, Fable [7] to 

C++, there are ways to convert it to Java bytecode [8], or partially to CUDA [9]. The 

issue with those solutions is that in many cases they do not attempt to generate human- 

readable code, and even if they do the target language cannot offer programming flexibility at 

the Python level, and thus connecting from high-level orchestrating code to low-level 

implementation might be necessary. 

3.2. Improving Python Performance 

As improving performance of Python is a very popular research topic, there is a lot of 

work being done in that area. We shall not attempt to give a detailed survey of all available 

solutions in this section. Instead, we will familiarize the reader with solutions that are most 

related. 

3.2.1. NumPy. NumPy [10] is a BLAS-compliant numerical library for Python, 

which, when used correctly, can achieve very good performance. NumPy’s approach to 

higher per- formance in Python is very straightforward. NumPy is par- tially implemented in 

Python, but it mostly consists of a big collection of low-level language implementations 

which are interfaced with Python through the CPython API. The implementations often 

contain manually unrolled loops to support SIMD compiler optimizations, or contain code 
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that is preprocessed by the C compiler at installation time to generate the code. 

Those low-level implementation are very efficient, but are not useful in cases when 

they would need to be tailored for some specific use. NumPy cannot be used to accelerate 

any given algorithm. 

3.2.2. f2py. In the context of this work, one very notable part of NumPy is f2py 

[11], a Python wrapper generator for Fortran code. It scans Fortran code for modules and 

function signatures and creates Python interface for them. It delegates compilation of 

Fortran to chosen compiler available in the system, and couples together the compiled 

Fortran code with the Python interface for it into a single binary file that can be imported in 

Python using standard import module_compiled_with_f2py statement. 

Code compiled using f2py benefits from outsourcing the compilation process because 

of the compiler optimizations available in many mature Fortran compilers. Unfortunately, it 

suffers from significant compilation overhead. Compi- lation process heavily involves the 

file system as many intermediate files need to be created and then discarded, which slows it 

down significantly. This overhead is espe- cially visible in case of compiling relatively 

small pieces of Fortran code. 

3.2.3. Numba. Numba [12] is a JIT compiler for Python. It does not compile Python 

directly, but instead transforms it into LLVM Intermediate Representation, and delegates 

the compilation to the LLVM toolchain. Through an easy-to- use API, Numba enables JIT 

compilation of selected parts of Python code. The compiled code sections have to contain 

only a restricted subset of Python syntax. Additionally, 

Numba cannot shed all layers of indirection present in Python, because it is not 

capable of complete type analysis. An interesting advantage of using Numba is a relatively 

short compilation time, which is achieved by performing compilation completely in 

memory. The lack of involvement of the file system can have significant compilation 

time 

benefits in case of compiling single Python functions. 

As mentioned in the introduction, there are inherent unavoidable problems with 

unavailability of reliable type inference in Python, and with dynamic indirection – Numba 

runs into those problems. 

3.2.4. Cython. Cython [13] is a language derived from Python, and also a software 

solution that translates Cython language to C with certain extensions. Reason is perfor- 

mance, especially the case of numerical loops [14]. Cython can usually outperform NumPy 

in cases of construction of sparse matrices, data transformation, repacking, equation 

solving, among others [15]. 

Cython language is very similar to Python in a sense that a subset of Python is also 

valid Cython code. However, Cython extends Python syntax by adding few C-related con- 

structs. This makes Cython code backwards-incompatible with Python – once the code is 

converted to Cython so as to benefit from its performance boost, it is no longer valid 

Python. For example: variable types have to be defined in a way which is not compatible 

with Python, and, there is a separate import system for C-related constructs
5
 which is not 

compatible with Python. 
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Cython provides a so-called “pure mode” via which the original Python code can be 

left untouched, and a separate file with static type information for that code needs to be 

created instead [15]. This additional file is ignored by Python interpreter, but used by 

Cython framework, which provides some level of compatibility, however this lowers 

maintainability of the code because two files have to be kept in sync manually. 

Cython framework, apart from providing application per- formance boost, incurs a 

significant compilation overhead, because Cython framework delegates the compilation of 

C code to an external compiler (as available in the system) [15], exactly as it is in the case 

of f2py. 

4. Our Solution 

This work contributes a two-way transpiler operating on subsets of Fortran 77/90/95 

and Python 3 that is able to handle: 

• fundamental types, basic syntax, selected array op- erations, 

• some idiomatic statements (command-line printing, basic file I/O), 

• internal API calls (selected Fortran intrinsics, Python built-ins and stdlib functions) 

and 

• external APIs (MPI to a limited extent). 

5. Cython documentation – Faster code via static typing: http://docs. 

cython.org/src/quickstart/cythonize.html 

We also contribute a workflow design for migrating legacy Fortran applications to 

Python without sacrificing their performance. The workflow consists of 3 main steps: 

1) transpilation of legacy Fortran to Python already annotated with type hints – 

because type informa- tion is available in Fortran; 

2) performance-critical functions in the resulting Python code have to be manually 

marked using decorators (a standard Python language feature); 

3) decorated kernels are translated at runtime to For- tran, compiled, interfaced with 

Python using f2py and executed instead of their Python counterparts. 

Workflow also supports boosting performance of any Python code as long as it is 

translatable to Fortran. 

The workflow does not aim at full automation when it comes to translating Fortran 

to Python, because with a complete legacy application translation in mind the only feasible 

aim can be significant simplification of migration process – with some manual work still 

required. 

Moreover, workflow leverages existing Python tools as much as possible to decrease 

functional overlap. 

Workflow is designed with two main use cases in mind. 

 

4.1. Use Case 1 

User has high-performing Fortran 77/90/95 source code that she wants to migrate to 

Python, possibly change some things, and still be able to run it with equivalent efficiency as 

the original Fortran implementation. At the same time, after migrating to Python, user wants 

for her application to remain in Python. 

http://docs/
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The process is as follows: 

• Fortran source code is translated to Python 3.5 code automatically augmented with 

type annotations and type comments. 

• User can annotate selected functions of resulting Python code with a special 

decorator. 

• This decorator, at runtime, triggers an automatic translation of Python code into 

Fortran, compilation of Fortran code, creation of Python-Fortran interface, 

and substitution of original Python function with that interface. 

• Whenever a function is executed, the call is for- warded to wrapped Fortran function 

and return value, if any, is forwarded from Fortran to Python. 

User thus benefits from high performance of Fortran while maintaining all of her code 

in Python. 

 

4.2. Use Case 2 
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The process is as follows: 

• User can extract the computing kernels into separate functions – this is most 

probably done already. 

• User can annotate selected kernel functions with a special decorator. 

• Additionally, user can provide type information for those functions using Python 

type hints – describing function argument types and return type (both with type annotations) 

and types of local variables (with type comments). 

• The decorator, at runtime, triggers the same process as described in the last 2 steps 

of Use Case 1. 

Again: user benefits from high performance of Fortran while maintaining all of her 

code in Python. 

 

5. Implementation 

5.1. Mapping Between Fortran and Python 

Languages like Python and Fortran, although very dif- ferent, have some common 

syntax. Not exhaustive list in- cludes: numeric types such as integer and floating point 

numbers, arrays, integer-indexed for loops, binary operator for exponentiation, branching 

statements and routines that can receive data by reference. It follows that some parts of a 

given Python or Fortran program’s source code might look very similar to each other. 

Translation is straightforward when a 1-to-1 mapping exists between syntax elements 

of each language. Prominent examples of such syntax would be: simple mathematical ex- 

pressions, boolean formulas, some assignments, comments, integer-indexed for loops, while 

loops, etc. These syntactic structures are very simple and vary relatively little across both 

programming languages. 

Non-straightforward translation occurs when there is no exact mapping and the 

relationship is more complex. Still, there are many such structures which occur commonly. 

File operations, printing to command-line, etc. In the scientific context some cases of array 

indexing, array memory layout and usage of various APIs, e.g. MPI, are not so trivial to 

translate. 

5.2. Basic syntax. Among things trivially translated are 

 

many of the binary operators like addition, subtraction, mul- tiplication, division and 

exponentiation as well as boolean operators. 

With static type information available, Python’s true division operator can be reliably 

translated. The same ap- plies to translating to Python: the truncating behaviour of Fortran’s 

division in cases when dividend is integer and Fortran’s string concatenation operator. 

Translation complexity of while loops depends on the complexity of the expression of 

loop exit condition, and the syntactic overhead of the while loop itself is nearly non- 

existent. 

The for loop handling is currently limited to those with with integer index variable. It 

would also be possible to do a straightforward translation of Python sequence enumeration 

– in cases where one can depend on sequence having a measurable length that does not 
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change at runtime. 

Python’s usage of unnamed entities can be directly re- flected in Fortran in many cases, 

however in case of boolean operators applied on arrays there is the same problem as in the 

case of intrinsic functions. 

A .ne. 0 ! logical array 

nonzero = count(A .ne. 0) 

A[A != 0] # sub-array 

nonzero = len(A[A != 0]) 

The variable name must be duplicated in case of trans- lating to Python, and the 

duplicate must be detected and eliminated in case of translating to Fortran. Moreover, since 

the actual result type of such operations is different, they are translatable only in specific 

context of use as arguments for intrinsic functions. 

5.1.1. Array operations. Translation of array access is surprisingly easy, because 

NumPy arrays and Fortran arrays are addressed very similarly. Arrays in Fortran are indexed 

from 1 by default, but with care the array section access and assignment are translatable. 

Since assignment in Python works differently in case of immutable and mutable 

objects, its translation depends on the type of translated object and array assignment has to 

reflect that. 

Also, some array operations look entirely different in Fortran and Python. Translation 

of those operations must sometimes be done on case-by-case basis. 

Function call and array element access is in some cases be indistinguishable from one 

another in Fortran without use of name resolution. The heuristic that we propose in our 

approach is to assume that a name is a call to a function unless it is found to be a declared 

variable. Since variable declarations are necessary to be given first, the call/array distinction 

can be done by the parser provided that the variable declarations are cached and accessible 

when parsing subsequent statements. 

5.1.2. Idiomatic statements. The assignment translation becomes complex if value 

of assigned variable cannot be easily copied. 

Fortran’s variable declarations have no direct translation in Python because in Python 

variables are never declared. As such, the translator from Fortran to Python must convert all 

Fortran variable declarations to assignments, but translator from Python to Fortran must 

generate extra statements at the beginning of the function after all local variables from the 

function and their types are known. This is not a straightforward 1-to-1 translation, because 

in case of two- way translation, the translator cannot know for sure if a given 

assignment originated as an assignment, or as a variable declaration. Such simplistic 

approach might create superfluous assignments at the beginning of the function body with 

each two-way translation iteration. It is, however, not a problem for the intended workflow. 

The Fortran’s implicit none statement has no di- rect translation in Python. The heuristic 

we propose is to assume that all generated Fortran functions start with this statement. In 

perspective, the information about presence or lack of any idiomatic statements can be 

embedded in Python source code in specially-formatted comments, which are only activated 

and expressed if a function is transpiled to a language matching the comment’s format. 
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Python’s import and Fortran’s include or use state- ments require special treatment not 

because of their syntax, which is rather simple, but because they add functionality to the 

code, as explained above in an MPI API example. This added functionality depends 

completely on the content hiding behind the path/name that is included/imported. 

There are many ways to introduce the exact same functionality, and sometimes the 

mere inclusion of some functionality has side effects. For example, when importing mpi4py 

in Python, in some cases the MPI_Init() is executed automatically, while in other cases it is 

not. 

A heuristic that we propose in our approach is to disallow non-canonical inclusion 

statements. This ensures generation of a reliable translation for cases it is possible according 

to the implementation, and signaling a problem for other cases. 

5.1.3. Internal API calls. Some Fortran’s intrinsics have a corresponding Python’s 

stdlib function, others are a combi- nation of several functions. In general, they must 

translated on case-by-case basis. We provide mappings for a small subset of Fortran’s 

intrinsic functions. Other functions are translated as-is. Such translation might seem useless 

until we consider that our aim is to support one-way whole-migration from Fortran so that 

only the kernels are to be translated back to Fortran. In this context, faithful translation 

functions for accessing environment variables or reading input data from files during 

application setup is not necessary, because almost always these are better expressed in 

object-oriented APIs which are available only in Python, and initialization has no effect on 

computational performance. 

5.1.4. External APIs: MPI. We consider it as the most im- portant external API to 

be handled by the transpiler, because it is sometimes used in computational kernels to 

synchronize progress of many processes, or to overlap communication with computation. 

After analysis of conventions followed by native Fortran API compared with Python’s 

object-oriented mpi4py, we determined what transformations need to be applied to many 

commonly used functions. 

5.1.5. Unsupported Python features. class keyword and any concepts related to 

classes, instantiation etc. are not sup- ported. That is simply because those concepts have 

limited use in the context of high-performing numerical kernels. 

with statement is not supported. 

async keyword is not supported. 

Dynamic type change is what occurs in Python when a variable that initially had some 

type is assigned a value of a different, incompatible type. Such behaviour is by definition 

illegal in a statically typed language. 

The Python’s dynamic behaviour cannot be expressed in Fortran directly, but 

variable renaming, approach used by compilers in optimization, can be used in 

deterministic assignment cases to resolve the problem. If, from a control flow graph, we 

determine that a subsequent assignment invalidates the variable for all control flow paths, we 

can safely create a renamed duplicate and from that point on use the renamed duplicate 

instead of the original variable. Such approach will not work in all cases, and therefore in 



SCIENTIFIC ASPECTS AND TRENDS IN THE FIELD OF  SCIENTIFIC RESEARCH 
International scientific online conference 

52 
 

our solution we propose to forbid dynamic retyping – i.e. we assume that once a value of 

specific type is given to a variable, the variable retains that type through its lifetime. 

5.1.6. Unsupported Fortran features. Fortran’s indication of variable memory length 

via kind attribute, as well as kind-related intrinsic functions support is missing. Still, most of 

the time there is a very straightforward workaround 

for this. Specifically, instead of: integer(kind=8) one can use integer*8 or integer(8). 

Fortran 90 and later supports arrays with assumed shape 

– meaning that the sizes of dimensions of an input array do not have to be predefined in 

the subroutine. Support for this is missing in the current implementation of the translator. 

It is possible to transpile two or more Python functions from the same module to 

Fortran, and in theory they could as well call each other without any issues. However, in the 

current implementation, each transpiled function is compiled to a separate shared library 

object, and therefore currently all translated kernels have to be separate computational 

entities 

– one may not call any other. 

We do not support Fortran’s n-dimensional assignment expression, however it can be 

reexpressed using equivalent multi-level do loops before translation: forall(i=1:ni,j=1:nj) B(i, 

j) = i * j 

We currently do not support pragmas for compiler ex- 

tensions such as OpenMP and OpenACC: 

!$acc kernels 

!$omp parallel 

do ... 

5.3. Technologies Used 

We developed a Python 3 package that provides all aforementioned features. To parse 

code and store Python’s AST we use a recent typed_ast
6
 package. To generate code from it 

we use typed_astunparse
7
 package. For migrating Fortran, we use our own transpiler 

implementation and a custom designed AST. We transform between our AST and Python’s 

AST as necessary. 

6. Case Study 1: DGEMM 

To test the transpiler and the workflow’s use cases, we did several case studies that 

highlight the characteristics of the approach, and characteristics of the current transpiler 

implementation. For all our experiments, we are using the machine with the following 

hardware and software specifi- cation: 
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In our first case study, we assume that user has a C-like matrix-matrix multiplication 

implementation in Python, and wants to accelerate it. The starting code is as follows: 

6. https://pypi.python.org/pypi/typed-ast 

7. https://pypi.python.org/pypi/typed-astunparse 

 

1 def my_matmul(a, b, a_width, a_height, b_width): 

2 c = [0 for _ in range(b_width * a_height)] 

3 for y in range(a_height): 

4 for i in range(a_width): 

5 for x in range(b_width): 

6 c[y * b_width + x] += \ 

7 a[y * a_width + i] * b[i * b_width + x] 

8 return c 

6.1. Currently Available Solutions 

What approaches can she use to boost performance, and what results do they yield? 

We compare NumPy [10], Numba [12], f2py [11] and our framework. 

6.1.1. NumPy. This is the most obvious solution in this particular scenario. User can 

abandon her code and simply use a routine provided by NumPy. This, however, requires 

restructuring the data. After reshaping the arrays, the mul- tiplication is simply a @ b. 

This solution, however, is inapplicable in case that the 

user would like to change the function even a little bit. 

6.1.2. Numba. Instead of using NumPy like this, user can change her data format 

from plain Python lists to NumPy arrays. This has several benefits: for example NumPy 

arrays are more compact (i.e. they use less memory) and there are many convenient and 

well-implemented (i.e. efficient) functions that one can use to operate on them. 

After that, user can decorate her NumPy-enabled func- tion with @numba.jit to get 

some performance boost though just-in-time compilation. 

6.1.3. f2py. A very drastic alternative solution that could increase the performance 

boost is to manually translate all of the implementation to a Fortran 77 subroutine and create 
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a Python interface for that subroutine using f2py tool provided with NumPy. The resulting 

interface will accept NumPy arrays as input and return a NumPy array. 

 
The resulting code is much longer – it contains as many extra lines for variable and 

constant declarations, as the 

original Python function counted in total. Moreover, since unfortunately in Fortran 77 

arrays cannot have dynamically defined sizes, we need to set a limit for matrix size. 

This solution is non-trivial and requires additional knowledge about Fortran and f2py 

interface in order to create a function that can be later interfaced with Python so that it 

has, for example, the same signature. 

Finally, this solution also requires boilerplate code that would compile the Fortran file, 

create the Python interface for it and import the interface in a desired place in Python. 

 

6.1.4. This work. Finally, the user can opt to use our work, which requires her to 

decorate the kernel, and annotate variable types. 
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Type of c is implied by the fact that it is returned. Since the code is going to be 

translated to Fortran 77, 

the same constraints apply to it as to target language. For example, arrays need to 

have predefined sizes, and choice of the right size can be non-obvious. In this specific case, 

the maximum array length was set to 40000. 

 

6.2. Compilation Overhead Analysis 

 

 

Figure 3. Compilation and/or translation overhead comparison for existing approaches 

and this work. Numba JIT-compiles completely in memory, whereas f2py and we (because 

we use f2py as part of the workflow) use intermediate files and create a shared library file. 

Figure 4. Binary object reuse in our framework and Numba’s compilation time. 

Numba needs to recompile with each application launch, while we can simply load the 

compiled file. 

In traditional computing, compiling cost is paid with each source code update, 

therefore under ordinary circum- stances it doesn’t count towards time measurements. On 

the 

other hand, in interactive computing, if the whole application were to be compiled with 

each small change of the code, it would pose a significant problem. However, when the 

source code is expected to change rapidly, compilation cost may be mitigated by 

modularizing the application and re-compiling only the necessary parts – approach of Numba 

and this work. 

6.2.1. . The JIT compiler Numba compiles the func- tion completely in memory. 

Although code is translated to LLVM IR, and then to machine code, in-memory approach 

yields short compilation times – as seen in Figure 3. 

Compilation is initiated at first call to the decorated function, so if in a given 

application run the function is not called, there is no compilation overhead. After the initial 

call that includes the JIT compilation, the binary object is reused without any visible 

overhead for subsequent call. 

The binary is not stored on disk, so recompilation is needed for each application 

launch – as seen in Figure 4. 
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6.2.2. f2py and this work. On the other hand, f2py (and thus, this work) uses the file 

system, creating Fortran source code file even when it is given a string of characters via its 

Python interface, additional files related to building the For- tran library and some more for 

building a Python extension module containing the Fortran routine. Then, it launches the 

Python toolchain to create the library. All this happens behind the scenes in a temporary 

folder which is discarded at the end of the process with a single exception - the Python 

extension module that is copied to the destination directory. All this file-juggling takes 

considerable time, even for a very simple Fortran routine – as seen in Figure 3. 

The advantage of this approach is that the compiled binary object can be reused even 

in-between application launches – as seen in Figure 4. 

6.3. Computational Performance Analysis 

Let us compare the computational performance of each DGEMM implementation. 

Apart from the manual Fortran 

reimplementation of the routine, and its complete scraping in favour of matrix 

multiplication routine provided by NumPy, remaining solutions do not differ that much from 

the original code. Despite that, their performance varies enormously. 

 
 

 

Figure 5. Computational performance of pure Python while using our framework is the 

same as launching Fortran implementation through f2py. 

Overall, interpreted implementation is unsurprisingly the slowest. Let us consider it as a 

baseline and go down according to running time for matrix size 200. 

Numba achieves 230 improvement over the baseline implementation. 

User will see another factor 5 improvement after reim- plementing it all in Fortran, 

or over 1000 improvement over the initial version. The same boost 
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is also achieved by automatic translation provided by our transpiler, with which the user 

didn’t have to abandon her Python implementation. Finally, not shown in the Figure, but 

achieving factor 2.5 speedup over the simple Fortran code and nearly factor 2900 over initial 

code, is NumPy. This solution, however, is using a different algorithm entirely, because 

NumPy behind the scenes delegates matrix multiplication to a high-performing BLAS 

library. In principle, however, after changing the GEMM algorithm to a better one, the 

performance differ- 

ence should be smaller or non-existent. 

7. Case Study 2: Miranda IO 

Miranda IO
8
 is a parallel file system benchmarking application developed in Lawrence 

Livermore National Lab- oratory (LLNL). It is written in pure Fortran, and the latest intrinsic 

functions it uses were introduced in Fortran 95. 

The benchmark that the application performs is as fol- lows. Miranda performs 100 

iterations, and in every iteration it makes very heavy reads and writes and validates that the 

data was stored and retrieved correctly. It also uses MPI, although mainly for 

synchronizing the processes so that reads and writes occur concurrently, and to broadcast 

initialization data from the master process to all processes. 

Before migrating to Python, we have refactored the code in order to simplify some 

Fortran constructs currently unsup- ported by the transpiler. Additionally, the resulting 

Python code was not entirely correct. The numerical parts of code were translated correctly, 

however the orchestrating code had to be adjusted for conformance with Python standard 

library, specifically: the environment variable access code had to be adjusted and the I/O 

filename generating formulas were changed. Also, the computational kernel had to be 

extracted to a separate function. 

7.1. Computational Performance Analysis 

We measured computational performance at 4 stages of migration process: 

• original – stands for original Miranda 1.0.1 code; 

• refactored – is the refactored Miranda 1.0.1 code; 

• python – stands for Python version that was first automatically generated from the 

refactored Fortran, 

and then refactored manually to make up for details missed by current translator  

 

implementation; and 

 

•  
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• this work – stands for Python code with benchmark kernel annotated with 

transpilation decorator. 

Figure 7. Our framwork completely recovers from computational perfor- mance drop 

of Python version of Miranda IO while maintaining the code in Python. 

 

Original Miranda 1.0.1 code and the refactored version exhibit identical performance, 

illustrating that rewriting For- tran code without the modern forall syntax did not incur any 

performance penalties. 

Code auto-translated to Python version and then refac- tored displays factor of 6 

slowdown. This is a relatively good result for Python code. Although Miranda IO is an 

I/O benchmarking application, in does not consist entirely of reads and writes. To prepare 

non-trivial data to write and verify the data that was read, certain amount of calculations is 

necessary. Those calculations are the primary reason for the slowdown. 

8. Conclusion 

We described a workflow design for migration of legacy Fortran code and acceleration 

of Python code satisfying certain criteria. The key idea is that Python code can be 

efficiently compiled if the code is annotated with type hints and written as if the language 

was static – and the transpiled legacy Fortran code automatically meets these requirements. 

We have implemented two-way transpiler that achieves tolerable translation overhead 

(mitigated by reusability of binary objects between launches) and maximizes the com- 

putational speed-ups. Overall, we show that maintainability, extensibility and 

interoperability can be improved without 

sacrificing performance. 

We have evaluated the work on compute-intensive and I/O-intensive cases. We 

demonstrated that performance of DGEMM written in Python equals that of Fortran: 

there is no computational overhead from the framework; Python code can be as fast as 

Fortran when it is compiled to well- optimized machine code. 

Also, we showed that benchmark written in Fortran retains original performance after 

migration to Python: two- way translation approach is not only feasible, but also useful. Our 

final thought is that type hints are not only a static analysis tool, but can also be used as a 

reliable source of 

information for runtime performance optimization. 
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