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THE LEAST QUADRATIC NONRESIDUE AND VINOGRADOV'S HYPOTHESIS. 
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Abstract: Let αm and βn be two sequences of real numbers supported on [M,2M] and [N,2N] with M = 

X1/2−δ and N = X1/2+δ. We show that there exists a δ0 > 0 such that the multiplicative convolution of αm and βn 

has exponent of distribution  (in a weak sense) as long as 0 ≤ δ < δ0, the sequence βn is Siegel-Walfisz 

and both sequences αm and βn are bounded above by divisor functions. Our result is thus a general dispersion 

estimate for “narrow” type-II sums. The proof relies crucially on Linnik’s dispersion method and recent 

bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application 

related to the Titchmarsh divisor problem. 

Keywords: equidistribution in arithmetic progressions, dispersion method. 

 

Introduction 

Let p be an odd prime. We denote e(z) = exp(2πiz/p) and use χ to denote a non-

principal multiplicative character modulo p. An enormous number of number theoretic (and 

not only) results depend on bounds of exponential and character sums 

S(N;f) = X e(f(n))and T(N;f) = X 
χ(f(n)) 

1≤n≤N 1≤n≤N 

with a polynomial f with integer coefficients of degree n ≥ 1, see [7, 8, 9, 10, 11, 12, 13] 

and references there in. The celebrated Weil bound asserts that for N = p, that is, for complete 

sums we have 

|S(p;f)| ≤ (n − 1)p1/2and |T(p;f)| ≤ (n − 1)p1/2 (1) 

unless there is “an obvious” reason why this cannot be true. In the case of the sums 

S(N;f) this reason is simply the fact that f is a constant polynomial modulo p, In the case of 

the sums T(N;f) this reason is simply the fact that f is a kth power of another polynomial 

modulo p, where k is the order of the character χ. Under a similar conditions one has bounds 

for incomplete sums 

|S(N;f)| = O(np1/2 logp) and |T(N;f)| = O(np1/2 logp) (2) 
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for every N ≤ p. 

Polynomials of large degree 

One immediately remarks that the bounds (1) are useless if n > p1/2. Despite a half a 

century history of attempts to obtain a general nontrivial result beyond the square-root 

bound, we still do not know any such result. However, in some special cases, very ingenious 

methods have been invented, see [1, 2, 5, 6, 4], which may be a good indication (and even a 

way to go) that sich a non-trivial general bound exists. Proving such a bound or showing 
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that it does not exist would have a tantalasing effect on a vast number of areas such as 

number theory, algebraic geometry, coding theory, theoretic computer science and 

cryptography. 

Short sums 

Even if n is small (for example n = 2) the bounds (2) are also useless for “short” sums 

with N ≤ p1/2 and generally the situation seems to be a mirror reflection of the situation with 

polynomials of large degree. However, here there is one important exception for linear 

polynomials. Namely, the celebrated Burgess bound [3] asserts that if for any ε > 0 there is δ > 0 

such that if N ≥ p1/4+ε then 

) (3) 

for any integer a, see also [7, 10]. Curiously enough, all know proofs of this bound are 

based on the Weil bound (1). 

This naturally leads to two questions: 

• What about even shorter sums? For example with N ≥ pε? 

This question seems to be extremely hard, such a bound does not even follow from the 

Extended Riemann Hypothesis (at least not in a obvious way, unless a = 0). Moreover it 

would immediately imply the famous Vinogradov’s conjectures about the smallest 

quadratic non-residue and primitive root modulo p (both are believed to be of order O(pε). 

Thus it would probably be too ambitious to believe that we will be able to prove a 

nontrivial bound for N of order pε. However, moving beyond 1/4 + ε could be a much easier 

but still enormosuly important achievement. 

• What about extending the Burgess bound (3) to polynomials of higher degree? For example n = 2? 

Again, it seems that even the Extended Riemann Hypothesis is of no help here. 

Besides being a very natural number theoretic problem, such a bound would have a number 

of applications, including better analysis of a polynomial factorisation algorithm over finite 

fields, see Section 1.1 (and Problem 1.3 in particular) in [11]. Even the special case of 

quadratic polynomials of the form f(X) = (X + a)(X + b) (the only one needed for the 

aforementioned purpose) seems to be hard (however, it is not infeasible to hope for some 

progress in the nearest future). 
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