MICROOBJECT IMAGE ANALYSIS SOFTWARE COMPLEX

Authors

  • Samijonov Abdurashid Narzullo o’g’li Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
  • Mamatov Narzullo Solidjonovich
  • Raxmonov Erkin Davlatjonovich
  • Samijonov Boymizro Narzullo o’gli

Keywords:

Medical biological image, menu, filter, software, cell, segmentation.

Abstract

This research paper presents the results of software package development using different methods of medical-biological image processing based on a comprehensive and critical analysis of trends in each stage of medical-biological image processing.

References

Shamir, L., Delaney, J.D., Orlov, N., Eckley, D.M. and Goldberg, I.G. Pattern Recognition Software and Techniques for Biological Image Analysis. PLoS Computational Biology, 6(11), p. 960-974. https://doi.org/10.1371/journal.pcbi.1000974

Lim, H.N., Mashor, M.Y. and Hassan, R. White Blood Cell Segmentation for Acute Leukemia Bone Marrow Images. In 2012 International Conference on Biomedical Engineering. IEEE, pp. 357–361. https://doi.org/10.1109/ICoBE.2012.6179038

Yi, F. and Moon, I. Image Segmentation: A Survey of Graph-Cut Methods. In 2012 International Conference on Systems and Informatics (ICSAI2012). IEEE, pp. 1936–1941. https://doi.org/10.1109/ICSAI.2012.6223428

Chan, T.F. and Vese, L.A. Active Contours without Edges. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 10(2), pp. 266–77. https://doi.org/10.1109/83.902291

Dima AA, Elliott JT, Filliben JJ, Halter M, Peskin A, Bernal J, et al. Comparison of segmentation algorithms for fluorescence microscopy images of cells. Cytometry Part A 2011; 79A(7): 545-59.

Gopinath, A. and Bovik, A.C. Automatic Feature Extraction and Statistical Shape Model of the AIDS Virus Spike. IEEE Transactions on Bio-Medical Engineering, 59(12), pp. 3386–95. https://doi.org/10.1109/TBME.2012.2215858

Gamarra, M., Zurek, E. and San-Juan, H. A Study of Image Analysis Algorithms forSegmentation, Feature Extraction and Classification of Cells. Journal of Information Systems Engineering &Management, 2(4), 20. https://doi.org/10.20897/jisem.201720

Козловская, Л.В. Учебное пособие по клиническим лабораторным методам исследованиям. 2-е изд. / Л.В. Козловская, А.Ю. Пиколаев.- М. : Медицина, 1984.- 288 с.

Медовый, B.C. Информационные автоматизированные системы микроскопии для анализа биоматериалов / B.C. Медовый // Врач и информационные технологии. - 2004. - № 6. С. 32-37.

Дюк, В.А. Информационные технологии в медико-биологических исследованиях / В.А. Дюк. - СПб.: Питер, 2003. - 528 с.

Медовый, B.C. Автоматизированная микроскопия биоматериалов / B.C. Медовый, А.А. Парпара, A.M. Пятницкий и др. // Здравоохранение и медицинская техника. -2005. - №4(18). - С. 42-43.

Вудс, Р. Цифровая обработка изображений / Р. Вудс, Р. Гонсалес. - М, : Техносфера, 2006 г. -1072 с.

Сойфер, В.А. Методы компьютерной обработки изображений / В.А Сойфер. - Физматлит, 2003. - 784 с.

Bow, S.T. Pattern Recognition and Image Preprocessing / S.T. Bow, Dekker.-New York, 1992.

Дюран, Б. Кластерный анализ / Б. Дюран, П. Одел. - М. : Статистика, 1977.-128 с.

Вежневец, А. Выделение связных областей в цветных и полутоновы изображениях / А. Вежнвец // Графика и мультимедия. http://cgm.graphicon.ru/content/view/53/62.

Автоматизация процессов анализа изображений медико-биологических микрообъектов. Сб. трудов под ред. Прангишвили И.В., Поповой Г.М., Вып. 7. М.: ИПУ РАН, 1998. 89с.

N. A. Niyozmatova, N. S. Mamatov, B. I. Otaxonova, A. N. Samijonov and K. K. Erejepov, "Classification Based On Decision Trees And Neural Networks," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 01-04, doi: 10.1109/ICISCT52966.2021.9670345.

A. Samijonov, N. Mamatov, N. A. Niyozmatova, Y. Yuldoshev, and M. Asraev, “Gradient method for determining non-informative features on the basis of a homogeneous criterion with a positive degree,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 919, no. 4. DOI 10.1088/1757-899X/919/4/042011

N. Mamatov, N. A. Niyozmatova, A. Samijonov, S. Juraev, and B. Abdullayeva, “The choice of informative features based on heterogeneous functionals,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 919, no. 4. DOI 10.1088/1757-899X/919/4/042009

Mamatov, N. S., Samijonov, A. N., Yuldoshev, Y., & Khusan, R. (2020). Selection the informative features on the basis of interrelationship of features. In Techno-Societal 2018 - Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications (Vol. 2, pp. 121–129). https://doi.org/10.1007/978-3-030-16962-6_13

Fazilov, S., Mamatov, N., Samijonov, A., & Abdullaev, S. (2020). Reducing the dimensionality of feature space in pattern recognition tasks. Journal of Physics: Conference Series, 1441(1), 012139. https://doi.org/10.1088/1742-6596/1441/1/012139

Narzillo, M., Abdurashid, S., Nilufar, N., Musokhon, D., & Erkin, R. (2020). Definition of line formula on images. Journal of Physics: Conference Series, 1441(1), 012150. https://doi.org/10.1088/1742-6596/1441/1/012150

Mamatov, N., Samijonov, A., & Niyozmatova, N. (2020). Determination of non-informative features based on the analysis of their relationships. Journal of Physics: Conference Series, 1441(1), 012149. https://doi.org/10.1088/1742-6596/1441/1/012149

Niyozmatova, N. A., Mamatov, N., Samijonov, A., Abdukadirov, B., & Abdullayeva, B. M. (2020). Algorithm for determining the coefficients of the interpolation polynomial of Newton with separated differences. IOP Conference Series: Materials Science and Engineering, 862(4), 042019. https://doi.org/10.1088/1757-899X/862/4/042019

Niyozmatova, N. A., Mamatov, N., Samijonov, A., Mamadalieva, N., & Abdullayeva, B. M. (2020). Unconditional discrete optimization of linear-fractional function “-1”-order. IOP Conference Series: Materials Science and Engineering, 862(4), 042028. https://doi.org/10.1088/1757-899X/862/4/042028

Samijonov, A., Mamatov, N., Niyozmatova, N. A., Yuldoshev, Y., & Asraev, M. (2020). Gradient method for determining non-informative features on the basis of a homogeneous criterion with a positive degree. IOP Conference Series: Materials Science and Engineering, 919(4). https://doi.org/10.1088/1757-899X/919/4/042011

Niyozmatova, N. A., Mamatov, N., Samijonov, A., Rahmonov, E., & Juraev, S. (2020). Method for selecting informative and non-informative features. IOP Conference Series: Materials Science and Engineering, 919(4). https://doi.org/10.1088/1757-899X/919/4/042013

Mamatov, N., Niyozmatova, N. A., Samijonov, A., Juraev, S., & Abdullayeva, B. (2020). The choice of informative features based on heterogeneous functionals. IOP Conference Series: Materials Science and Engineering, 919(4). https://doi.org/10.1088/1757-899X/919/4/042009

Fazilov, S., & Mamatov, N. (2019). Formation an informative description of recognizable objects. Journal of Physics: Conference Series, 1210(1). https://doi.org/10.1088/1742-6596/1210/1/012043

Mamatov, N., Samijonov, A., & Yuldashev, Z. (2019). Selection of features based on relationships. Journal of Physics: Conference Series, 1260(10), 102008. https://doi.org/10.1088/1742-6596/1260/10/102008

Shavkat, F., Narzillo, M., & Abdurashid, S. (2019). Selection of significant features of objects in the classification data processing. International Journal of Recent Technology and Engineering, 8(2 Special Issue 11), 3790–3794. https://doi.org/10.35940/ijrte.B1494.0982S1119

Mamatov, N., Samijonov, A., Yuldashev, Z., & Niyozmatova, N. (2019). Discrete Optimization of Linear Fractional Functionals. 2019 15th International Asian School-Seminar Optimization Problems of Complex Systems, OPCS 2019, 96–99. https://doi.org/10.1109/OPCS.2019.8880208

Shavkat, F., Narzillo, M., & Nilufar, N. (2019). Developing methods and algorithms for forming of informative features’ space on the base K-types uniform criteria. International Journal of Recent Technology and Engineering, 8(2 Special Issue 11), 3784–3786. https://doi.org/10.35940/ijrte.B1492.0982S1119

Mamatov, N.S., Samijonov, A.N., Yuldoshev, Y., Khusan, R. (2020). Selection the Informative Features on the Basis of Interrelationship of Features. In: Pawar, P., Ronge, B., Balasubramaniam, R., Vibhute, A., Apte, S. (eds) Techno-Societal 2018 . Springer, Cham. https://doi.org/10.1007/978-3-030-16962-6_13

Маматов, Н., & Джалелова, М. (2023). Tasvir shovqinlari tahlili. Информатика и инженерные технологии, 1(2), 113–115. извлечено от https://inlibrary.uz/index.php/computer-engineering/article/view/25009

Маматов, Н., & Джалелова, М. (2023). Tasvir kontrastini etalonsiz baholash. Информатика и инженерные технологии, 1(2), 115–117. извлечено от https://inlibrary.uz/index.php/computer-engineering/article/view/25010

Маматов, Н., & Мадаминжонов, А. (2023). Sun’iy neyron tarmoqlari va ularning asosiy turlari. Информатика и инженерные технологии, 1(2), 121–124. извлечено от https://inlibrary.uz/index.php/computer-engineering/article/view/24999

Mamatov, N., Sultanov, P., & Jalelova, M. (2023). Analysis of imaging equipments of human internal organs. Scientific Collection «InterConf+», (38(175), 291–299. https://doi.org/10.51582/interconf.19-20.10.2023.026

Маматов, Н., Султанов , П. ., Жалелова , М. ., & Тожибоева , Ш. . (2023). КРИТЕРИИ ОЦЕНКИ КАЧЕСТВА МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ, ПОЛУЧЕННЫХ НА МУЛЬТИСПИРАЛЬНОМ КОМПЬЮТЕРНОМ ТОМОГРАФЕ. Евразийский журнал математической теории и компьютерных наук, 3(9), 27–37. извлечено от https://www.in-academy.uz/index.php/EJMTCS/article/view/20675

Маматов, Н. ., Султанов, П. ., Юлдашев , Ю. ., & Жалелова, М. . (2023). МЕТОДЫ ПОВЫШЕНИЯ КОНТРАСТНОСТИ ИЗОБРАЖЕНИЙ ПРИ МУЛЬТИСПИРАЛЬНОЙ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ. Евразийский журнал академических исследований, 3(9), 125–132. извлечено от https://www.in-academy.uz/index.php/ejar/article/view/20618

Mamatov, N. S., & Nuritdinov, N. D. (2023). SUN’IY INTELLEK USULLARIDAN FOYDALANGAN HOLDA TASVIRLARGA ISHLOV BERISH VA ALGORITMLASH USULLARI. SCHOLAR, 1(24), 33–41. Retrieved from https://researchedu.org/index.php/openscholar/article/view/4743

Mamatov, N., Pulatov, G., & Jalelova, M. (2023). ТАСВИР КОНТРАСТИНИ ОШИРИШ УСУЛИ ВА КОНТРАСТ БАҲОЛАШ МЕЗОН ОПТИМАЛ ЖУФТЛИГИ. DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE, 1(2), 158–167. Retrieved from https://dtai.tsue.uz/index.php/dtai/article/view/v1i225

N. Mamatov, A. Samijonov, N. Niyozmatova, B. Samijonov, K. Erejepov and O. Jamalov, "Algorithm for Selecting Optimal Features in Face Recognition Systems," 2023 19th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS), Novosibirsk, Moscow, Russian Federation, 2023, pp. 59-64, doi: 10.1109/OPCS59592.2023.10275750.

Methods for improving contrast of agricultural images N. S. Mamatov, N. A. Niyozmatova, M. M. Jalelova, A. N. Samijonov, Sh. X. Tojiboyeva E3S Web of Conf. 401 04020 (2023) DOI: 10.1051/e3sconf/202340104020

Downloads

Published

2023-12-15