METHODS OF THE WAVELET TRANSFORM IN THE PROCESSING OF COLOR IMAGES

Authors

  • Abdumajidov Dostonbek Botir o`g`li * Master, Faculty of Television Technology, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Uzbekistan

Keywords:

Wavelet, Image, CCD, DWT

Abstract

Many people use digital still cameras to take photographs in contemporary society. Significant amounts of digital information have led to the emergence of a digital era. Because of the small size and low cost of the product hardware, most image sensors use a color filter array to obtain image information. However, employing a color filter array results in the loss of image information; thus, a color interpolation technique must be employed to retrieve the original picture. Numerous researchers have developed interpolation algorithms in response to various image problems. The method proposed in this study involves integrating discrete wavelet transform (DWT) into the interpolation algorithm. The method was developed based on edge weight and partial gain characteristics and uses the basic wavelet function to enhance the edge performance and processes of the nearest or larger and smaller direction gradients. The experiment results were compared to those of other methods to verify that the proposed method can improve image quality.

References

B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, 1976.

View at: Google Scholar

T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpolation for digital still cameras suitable for a 32-bit MCU,” IEEE Transactions on Consumer Electronics, vol. 44, no. 4, pp. 1342–1352, 1998.

View at: Google Scholar

S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 6, pp. 503–513, 2003.

View at: Publisher Site | Google Scholar

J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for digital cameras,” in 2nd Real-Time Imaging, vol. 3028 of Proceedings of SPIE, pp. 117–125, February 1997.

View at: Google Scholar

R. Lukac, K. N. Plataniotis, D. Hatzinakos, and M. Aleksic, “A new CFA interpolation framework,” Signal Processing, vol. 86, no. 7, pp. 1559–1579, 2006.

View at: Publisher Site | Google Scholar

B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 997–1013, 2002.

View at: Publisher Site | Google Scholar

Downloads

Published

2022-11-14