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Abstract The k-means algorithm is generally the most known and used 

clustering method. There are various extensions of k-means to be proposed in the 

literature. Although it is an unsupervised learning to clustering in pattern recognition 

and machine learning, the k-means algorithm and its extensions are always 

influenced by initializations with a necessary number of clusters a priori. That is, 

the k-means algorithm is not exactly an unsupervised clustering method. In this 

paper, we construct an unsupervised learning schema for the k-means algorithm so 

that it is free of initializations without parameter selection and can also 

simultaneously find an optimal number of clusters. That is, we propose a novel 

unsupervised k-means (U- k-means) clustering algorithm with automatically finding 

an optimal number of clusters without giving any initialization and parameter 

selection. The computational complexity of the proposed U-k-means clustering 

algorithm is also analyzed. Comparisons between the proposed U-k-means and 

other existing methods are made. Experimental results and comparisons actually 

demonstrate these good aspects of the proposed U-k- means clustering algorithm. 

Index Terms Clustering, K-means, number of clusters, initializations, 

unsupervised learning schema, Unsupervised k-means (U-k-means). 

 

1. INTRODUCTION 

Clustering is a useful tool in data science. It is a method for finding cluster 

structure in a data set that is characterized by the greatest similarity within the 

same cluster and the greatest dissimilarity between different clusters. Hierarchical 

clustering was the earliest clustering method used by biolo- gists and social 

scientists, whereas cluster analysis became a branch of statistical multivariate 

analysis.  It is also an unsupervised learning approach to machine learning. From 

statistical viewpoint, clustering methods are generally divided as probability model-

based approaches and nonpara- metric approaches. The probability model-based 

approaches follow that the data points are from a mixture probability model so that 

a mixture likelihood approach to clustering is used. In model-based approaches, 

the expectation and maximization (EM) algorithm is the most used. For 

nonparametric approaches, clustering methods are mostly based on an objective 
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function of similarity or dissimilarity measures, and these can be divided into 

hierarchical and partitional methods where partitional methods are the most used. 

2. RELATED WORKS 

In this section, we review several works that are closely related with ours. The 

k-means is one of the most popular unsupervised learning algorithms that solve the 

well-known clustering problem. Let X = {x1, . . . , xn} be a data set in 

a d -dimensional Euclidean spac Rd . Let A = {a1, . . . , ac} 

be the c cluster centers. Let z   = [zik ]n×c, where zik is a binary variable (i.e. 

zik ∈ {0, 1}) indicating if the data point xi belongs to k-th cluster, k  =
n 

1, · · 
c

· , c. The 

k-means 

i   1      k   1   ik      i        k 

The k-means algorithm is iterated through necessary condi- 

tions for minimizing the k-means objective function J (z, A) with updating 

equations for cluster centers and memberships, respectively, as 

 
where xi ak is the Euclidean distance between the data point xi and the cluster 

center ak . There exists a difficult problem in k-means, i.e., it needs to give a number 

of clusters a priori. However, the number of clusters is generally unkown in real 

applications. Another problem is that the k-means algorithm is always affected by 

initializations. 

There are several clustering validity indices available for esti- mating the number 

c of clusters. Clustering validity indices can be grouped into two major categories: 

external and internal. External indices are used to evaluate clustering results by 

comparing cluster memberships assigned by a clus- tering algorithm with the 

previously known knowledge such as externally supplied class label. However, internal 

indices are used to evaluate the goodness of cluster structure by focusing on the 

intrinsic information of the data itself  so that we consider only internal indices. In the 

paper, these most widely used internal indices, such as original Dunn’s index 

(DNo), Davies-Bouldin index (DB), Silhouette Width (SW), Calinski and Harabasz 
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index (CH) , Gap statistics, generalized Dunn’s index (DNg), and modified Dunn’s 

index (DNs) are chosen for finding the number of clusters and then compared with 

our proposed U-k-means clustering algorithm. 

The DNo, DNg, and DNs  are supposed to be the simplest (internal) validity 

index where it compares the size of clusters with the distance between clusters. The 

DNo, DNg, and DNs indices are computed as the ratio between the minimum 

distance between two clusters and the size of the largest cluster, and so we are 

looking for the maximum value of index values. Davies-Bouldin index (DB) 

measures the average similarity between each cluster and its most similar one. The 

DB validity index attempts to maximize these between cluster distances while 

minimizing the dis- tance between the cluster centroid and the other data objects. 

The Silhouette value is a measure of how similar an object is to its own cluster 

(cohesion) compared to other clusters (separation). The silhouette ranges from 1 to 

1, where a high value indicates that the object is well matched to its own cluster and 

poorly matched to neighboring clusters. Thus, positive and negative large silhouette 

widths (SW) indicate that the corresponding object is well clustered and wrongly 

clustered, respectively. Any objects with the SW validity index around zero are 

considered not to be clearly discriminated between clusters. The Gap statistic [20] 

is a cluster validity measure based upon a statistical hypothesis test. The gap 

statistic works by comparing the change in within-cluster dispersion with that 

expected under an appro- priate reference null distribution at each value c. The 

optimal number of clusters is the smallest c. 

3. THE UNSUPERVISED K-MEANS CLUSTERING ALGORITHM There 

always exists a difficult problem in the k-means algorithm and its extensions for a 

long history in the literature. That is, they are affected by initializations and require a 

given number of clusters a priori. We mentioned that the X-means algorithm has 

been used for clustering without given a number of clusters a priori, but it still needs 

to specify a range of number of clusters based on BIC, and it is still influenced by 

initializations. To construct the k-means clustering algorithm with free of 

initializations and automatically find the number of clusters, we use the entropy 

concept. We borrow the idea from the EM algorithm by Yang et al. We first consider 

proportions αk in which the αk term is seen as the probability of one data point 

belonged to the kth class. Hence, we use − ln αk as the information in the 

occurrence of one data point belonged to the kth class, and so − Pc k=1 αk ln αk 

becomes the average of information. In fact, the term − Pc k=1 αk ln αk is the 

entropy over proportions αk . When αk = 1/c, ∀k = 1, 2, . . . , c, we say that there is 

no information about αk . At this point, we have the entropy achieve the maximum 
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value. Therefore, we add this term to the k-means objective function J(z, A) as a 

penalty. We then construct a schema to estimate αk by minimizing the entropy to 

get the most information for αk . To minimize − Pc k=1 αk ln αk is equivalent to 

maximizing Pc k=1 P αk ln αk . For this reason, we use c k=1 αk ln αk as a penalty 

term for the k-means objective function J(z, A). Thus, we propose a novel objective 

function as follows: β ≥ 0 JUKM1 (z, A, α) = Xn i=1 Xc k=1 zik kxi − akk 2 − βn Xc 

k=1 αk ln αk (1) In order to determine the number of clusters, we next consider 

another entropy term. We combine the variables membership zik and the proportion 

αk . By using the basis of entropy theory, we suggest a new term in the form of zik 

ln αk . Thus, we propose the unsupervised k-means (U-k-means) objective function 

as follows: 

 
 

We know that, when β and γ in Eq.  are zero, it becomes the original k-means. 

The Lagrangian of Eq.  is 

 
Algorithm by Yang et al. This is the robust-learning fuzzy c-means (RL-FCM) 

proposed by Yang and Nataliani. In Yang and Nataliani, they gave the RL-FCM 

objective function P J(U, α, A) = n i=1 Pc k=1 µik kxi − akk 2 − r1 Pn i=1 Pc k=1 µik 

ln αk + r2 Pn i=1 Pc k=1 µik lnµik − r3n Pc k=1 αk ln αk with µik , not binary 

variables, but fuzzy c-memberships with 0 ≤ µik ≤ 1 and Pc k=1 µik = 1 to indicate 

fuzzy memberships for the data point xi belonging to k-th cluster. If we compare the 

proposed U-k-means objective function JU−k−means(z, A, α) with the RL-FCM 

objective function J(U, α, A), we find that, except µik and zik with different 

membership representations, the RL-FCM objective function J(U, α, A) in Yang and 

Nataliani gave more extra terms and parameters and so the RL-FCM algorithm is 
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more complicated than the proposed U-k-means algorithm with more running time. 

For experimental results and comparisons in the next section, we make more 

comparisons of the proposed U-k-means algorithm with the RL-FCM algorithm. We 

also analyze the computational complexity for the U-k-means algorithm. In fact, the 

U-k-means algorithm can be divided into three parts: (1) Compute the hard 

membership partition zik with O (ncd); Compute the mixing proportion αk with O 

(nc); (3) Update the cluster center ak with O (n). The total computational complexity 

for the U-k-means algorithm is O (ncd), where n is the number of data points, c is 

the number of clusters, and d is the dimension of data points. Compared with the 

RL-FCM algorithm, the RL-FCM has the total computational complexity fwith O 

nc2d. 

 

REFERENCES 

 

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Englewood 

Cliffs, NJ, USA: Prentice-Hall, 1988. 

[2] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction 

to Cluster Analysis. New York, NY, USA: Wiley, 1990. 

[3] G. J. McLachlan and K. E. Basford, Mixture Models: Inference and 

Applications to Clustering. New York, NY, USA: Marcel Dekker, 1988. 

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood from 

incomplete data via the EM algorithm (with discussion),’’ J. Roy. Stat. Soc., Ser. B, 

Methodol., vol. 39, no. 1, pp. 1–38, 1977. 

[5] J. Yu, C. Chaomurilige, and M.-S. Yang, ‘‘On convergence and parameter 

selection of the EM and DA-EM algorithms for Gaussian mixtures,’’ Pattern 

Recognit., vol. 77, pp. 188–203, May 2018. 

[6] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recognit. 

Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010. 

[7] M.-S. Yang, S.-J. Chang-Chien, and Y. Nataliani, ‘‘A fully-unsupervised 

possibilistic C-Means clustering algorithm,’’ IEEE Access, vol. 6, pp. 78308–78320, 

2018. 

[8] J. MacQueen, ‘‘Some methods for classification and analysis of multivariate 

observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probab., vol. 1, 1967, pp. 

281–297. 

[9] M. Alhawarat and M. Hegazi, ‘‘Revisiting K-Means and topic modeling, a 

comparison study to cluster arabic documents,’’ IEEE Access, vol. 6, pp. 42740–

42749, 2018. 



  

 6 

[10] Y. Meng, J. Liang, F. Cao, and Y. He, ‘‘A new distance with derivative 

information for functional k-means clustering algorithm,’’ Inf. Sci., vols. 463–464, 

pp. 166–185, Oct. 2018. 

[11] Z. Lv, T. Liu, C. Shi, J. A. Benediktsson, and H. Du, ‘‘Novel land cover 

change detection method based on k-Means clustering and adaptive majority voting 

using bitemporal remote sensing images,’’ IEEE Access, vol. 7, pp. 34425–34437, 

2019. [12] J. Zhu, Z. Jiang, G. D. Evangelidis, C. Zhang, S. Pang, and Z. Li, 

‘‘Efficient registration of multi-view point sets by K-means clustering,’’ Inf. Sci., vol. 

488, pp. 205–218, Jul. 2019. 

  


