IKKINCHI TARTIBLI GRONUOLL CHEGARALANISHLI BOSHQARUVLAR UCHUN TUTISH MASALASI

Authors

  • G‘ayniddinov Shayxislom Tolibjon o‘g‘li
  • Polvanov Rashid Raximjanovich
  • Abduraximova Shaxnoza Abduxalil qizi

Keywords:

Differensial o‘yin, geometrik chegaralanish, parallel quvish strategiyasi, quvlovchi, qochuvchi, tezlanish, Granoull chegaralanishli.

Abstract

Ushbu maqolada boshqaruvlar Granoull chegaralanishga ega holda ikkinchi tartibli differensial oyinlar uchun tutish masalasi organiladi. Bunda quvlovchi  uchun parallel quvish strategiyasi quriladi va uning yordamida  tutish masalasi  uchun yetarli shartlar  keltiriladi.

References

Isaacs R. Differential games. John Wiley and Sons, New York, 1965 .

Nahin P.J. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton, 2012 .

Azamov A.A., Samatov B.T. The П-Strategy: Analogies and Applications. The Fourth International Conference Game Theory and Management , St. Petersburg, Russia: 2010, p. 33-47.

Samatov B.T. The Pursuit- Evasion Problem under Integral-Geometric constraints on Pursuer controls. Automation and Remote Control, Pleiades Publishing, Ltd. New York: 2013, 74(7), p. 1072-1081.

Polvanov R.R., Sharipov F. Kombinatorika masalalarini yechish usullari. Namangan davlat universiteti. Ilmiy axborotnomasi, maxsus son, 2020 yil.

Polvanov R.R. Ehtimollar nazariyasining predmeti va uning texnik masalalar uchun ahamiyati. Namangan davlat universiteti. Ilmiy axborotnomasi, maxsus son, 2022 yil.

Polvanov R.R. Maktab oquvchilari uchun ehtimollar nazariyasi fanidan misol-masalalarni yechish usullari. Namangan davlat universiteti. Ilmiy axborotnomasi, maxsus son, 2021 yil, 8-son.

G`ayniddinov Sh. T, Samatov B. T. Modification of “Life Line” game of isaact. Namangan davlat universiteti. Ilmiy axborotnomasi, 4-son, 2021 yil. b.25-32

Downloads

Published

2024-02-07